In mathematics, an exotic R4 is a differentiable manifold that is homeomorphic but not diffeomorphic to the Euclidean space R4. The first examples were found in 1982 by Michael Freedman and others, by using the contrast between Freedman's theorems about topological 4-manifolds, and Simon Donaldson's theorems about smooth 4-manifolds. There is a continuum of non-diffeomorphic differentiable structures of R4, as was shown first by Clifford Taubes. Prior to this construction, non-diffeomorphic smooth structures on spheres – exotic spheres – were already known to exist, although the question of the existence of such structures for the particular case of the 4-sphere remained open (and still remains open as of 2018). For any positive integer n other than 4, there are no exotic smooth structures on Rn; in other words, if n ≠ 4 then any smooth manifold homeomorphic to Rn is diffeomorphic to Rn.
Chameleon - Puzzle with a chameleon, I invite you to arrange.
Play now!

Added month ago by MKA


exotic nut tree - tree, flowers, grass, leaves
Play now!
exotic nut tree

Added year ago by wieslawa